Boron

« Supplemental Index
Categories: Periodic Element

BoronType: Periodic Element
Periodic Element: (B)
RDA: Not established
Importance- To Body:
Boric acid has antiseptic, antifungal, and antiviral properties and for these reasons is applied as a water clarifier in swimming pool water treatment. Mild solutions of boric acid have been used as eye antiseptics.
Distribution- In Body:
Adult dietary intake is estimated at 0.9 to 1.4 mg/day, with about 90% absorbed. What is absorbed is mostly excreted in urine. The Tolerable Upper Intake Level for adults is 20 mg/day.
Excess Effects:
Elemental boron, boron oxide, boric acid, borates, and many organoboron compounds are relatively nontoxic to humans and animals (with toxicity similar to that of table salt). An intake of 4 g per day of boric acid was reported without incident, but more than this is considered toxic in more than a few doses. Intakes of more than 0.5 grams per day for 50 days cause minor digestive and other problems suggestive of toxicity.
Boranes (boron hydrogen compounds) and similar gaseous compounds are quite poisonous. As usual, it is not an element that is intrinsically poisonous, but their toxicity depends on structure.
Deficiency Effects:
A small human trial published in 1987 reported on postmenopausal women first made boron deficient and then repleted with 3 mg/day. Boron supplementation markedly reduced urinary calcium excretion and elevated the serum concentrations of 17 beta-estradiol and testosterone.
A report given by E. Wayne Johnson et al. at the 2005 Alan D. Leman Swine Conference suggests that boron deficiency produces osteochondrosis in swine that is correctable by addition of 50 ppm of boron to the diet. The amount of boron required by animals and humans is not yet well established.
Sources Food:
Boron is necessary for plant growth, but an excess of boron is toxic to plants, and occurs particularly in acidic soil. It presents as a yellowing from the tip inwards of the oldest leaves and black spots in barley leaves, but it can be confused with other stresses such as magnesium deficiency in other plants.
Sources Environmental/Geographic:
Boric acid is more toxic to insects than to mammals, and is routinely used as an insecticide.
Supplement Information:

Boron (Wikipedia)
Boron,  5B
Boron R105.jpg
boron (β-rhombohedral)
General properties
Pronunciation /ˈbɔːrɒn/ (BOR-on)
Allotropes α-, β-rhombohedral, β-tetragonal (and more)
Appearance black-brown
Standard atomic weight (Ar, standard) [10.80610.821] conventional: 10.81
Boron in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


B

Al
berylliumboroncarbon
Atomic number (Z) 5
Group group 13 (boron group)
Period period 2
Element category   metalloid
Block p-block
Electron configuration [He] 2s2 2p1
Electrons per shell
2, 3
Physical properties
Phase at STP solid
Melting point 2349 K ​(2076 °C, ​3769 °F)
Boiling point 4200 K ​(3927 °C, ​7101 °F)
Density when liquid (at m.p.) 2.08 g/cm3
Heat of fusion 50.2 kJ/mol
Heat of vaporization 508 kJ/mol
Molar heat capacity 11.087 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2348 2562 2822 3141 3545 4072
Atomic properties
Oxidation states 3, 2, 1, −1, −5​(a mildly acidic oxide)
Electronegativity Pauling scale: 2.04
Ionization energies
  • 1st: 800.6 kJ/mol
  • 2nd: 2427.1 kJ/mol
  • 3rd: 3659.7 kJ/mol
  • (more)
Atomic radius empirical: 90 pm
Covalent radius 84±3 pm
Van der Waals radius 192 pm
Color lines in a spectral range
Miscellanea
Crystal structure rhombohedral
Rhombohedral crystal structure for boron
Speed of sound thin rod 16,200 m/s (at 20 °C)
Thermal expansion β form: 5–7 µm/(m·K) (at 25 °C)
Thermal conductivity 27.4 W/(m·K)
Electrical resistivity ~106 Ω·m (at 20 °C)
Magnetic ordering diamagnetic
Magnetic susceptibility −6.7·10−6 cm3/mol
Mohs hardness ~9.5
CAS Number 7440-42-8
History
Discovery Joseph Louis Gay-Lussac and Louis Jacques Thénard(30 June 1808)
First isolation Humphry Davy(9 July 1808)
Main isotopes of boron
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
10B 20% stable
11B 80% stable
10B content may be as low as 19.1% and as high as 20.3% in natural samples. 11B is the remainder in such cases.
| references | in Wikidata

Boron is a chemical element with symbol B and atomic number 5. Produced entirely by cosmic ray spallation and supernovae and not by stellar nucleosynthesis, it is a low-abundance element in the Solar system and in the Earth's crust. Boron is concentrated on Earth by the water-solubility of its more common naturally occurring compounds, the borate minerals. These are mined industrially as evaporites, such as borax and kernite. The largest known boron deposits are in Turkey, the largest producer of boron minerals.

Elemental boron is a metalloid that is found in small amounts in meteoroids but chemically uncombined boron is not otherwise found naturally on Earth. Industrially, very pure boron is produced with difficulty because of refractory contamination by carbon or other elements. Several allotropes of boron exist: amorphous boron is a brown powder; crystalline boron is silvery to black, extremely hard (about 9.5 on the Mohs scale), and a poor electrical conductor at room temperature. The primary use of elemental boron is as boron filaments with applications similar to carbon fibers in some high-strength materials.

Boron is primarily used in chemical compounds. About half of all boron consumed globally is an additive in fiberglass for insulation and structural materials. The next leading use is in polymers and ceramics in high-strength, lightweight structural and refractory materials. Borosilicate glass is desired for its greater strength and thermal shock resistance than ordinary soda lime glass. Boron compounds are used as fertilizers in agriculture and in sodium perborate bleaches. A small amount of boron is used as a dopant in semiconductors, and reagent intermediates in the synthesis of organic fine chemicals. A few boron-containing organic pharmaceuticals are used or are in study. Natural boron is composed of two stable isotopes, one of which (boron-10) has a number of uses as a neutron-capturing agent.

In biology, borates have low toxicity in mammals (similar to table salt), but are more toxic to arthropods and are used as insecticides. Boric acid is mildly antimicrobial, and several natural boron-containing organic antibiotics are known. Boron compounds play a strengthening role in the cell walls of all plants, making boron a necessary plant nutrient. There is no consensus on whether boron is an essential nutrient for mammals, including humans, although there is some evidence it supports bone health.

« Supplemental Index