Cobalt

« Supplemental Index
Categories: Periodic Element

cobaltType: Trace Element
Name: Cobalt
Periodic Element: (Co)
RDA: None listed
Importance- To Body:
Necessary for formation of red blood cells, A constituent of vitamin B12, which is needed for normal maturation of red blood cells.
Distribution- In Body:
* Approx. % of Body Mass
Found in all cells larger amounts in bone marrow.
Excess Effects:
Industrial exposure may cause dermatitis, diseases of erythrocytes.

Goiter, Polycythemia; Heart Disease.
Deficiency Effects:
May cause Pernicious Anemia
Sources Food:
Meats, Liver, Lean Meat, Poultry, Fish, Milk
Sources Environmental/Geographic:
None listed
Supplemental information:

Cobalt (Wikipedia)
Cobalt,  27Co
cobalt chips
General properties
Pronunciation /ˈkbɒlt/ (About this sound listen)
Appearance hard lustrous bluish gray metal
Standard atomic weight (Ar, standard) 58.933194(4)
Cobalt in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Co

Rh
ironcobaltnickel
Atomic number (Z) 27
Group group 9
Period period 4
Element category   transition metal
Block d-block
Electron configuration [Ar] 3d7 4s2
Electrons per shell
2, 8, 15, 2
Physical properties
Phase at STP solid
Melting point 1768 K ​(1495 °C, ​2723 °F)
Boiling point 3200 K ​(2927 °C, ​5301 °F)
Density (near r.t.) 8.90 g/cm3
when liquid (at m.p.) 8.86 g/cm3
Heat of fusion 16.06 kJ/mol
Heat of vaporization 377 kJ/mol
Molar heat capacity 24.81 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1790 1960 2165 2423 2755 3198
Atomic properties
Oxidation states −3, −1, +1, +2, +3, +4, +5​(an amphoteric oxide)
Electronegativity Pauling scale: 1.88
Ionization energies
  • 1st: 760.4 kJ/mol
  • 2nd: 1648 kJ/mol
  • 3rd: 3232 kJ/mol
  • (more)
Atomic radius empirical: 125 pm
Covalent radius Low spin: 126±3 pm
High spin: 150±7 pm
Color lines in a spectral range
Miscellanea
Crystal structure hexagonal close-packed (hcp)
Hexagonal close packed crystal structure for cobalt
Speed of sound thin rod 4720 m/s (at 20 °C)
Thermal expansion 13.0 µm/(m·K) (at 25 °C)
Thermal conductivity 100 W/(m·K)
Electrical resistivity 62.4 nΩ·m (at 20 °C)
Magnetic ordering ferromagnetic
Young's modulus 209 GPa
Shear modulus 75 GPa
Bulk modulus 180 GPa
Poisson ratio 0.31
Mohs hardness 5.0
Vickers hardness 1043 MPa
Brinell hardness 470–3000 MPa
CAS Number 7440-48-4
History
Discovery and first isolation Georg Brandt (1735)
Main isotopes of cobalt
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
56Co syn 77.27 d ε 56Fe
57Co syn 271.79 d ε 57Fe
58Co syn 70.86 d ε 58Fe
59Co 100% stable
60Co syn 5.2714 y β, γ 60Ni
| references | in Wikidata

Cobalt is a chemical element with symbol Co and atomic number 27. Like nickel, cobalt is found in the Earth's crust only in chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal.

Cobalt-based blue pigments (cobalt blue) have been used since ancient times for jewelry and paints, and to impart a distinctive blue tint to glass, but the color was later thought by alchemists to be due to the known metal bismuth. Miners had long used the name kobold ore (German for goblin ore) for some of the blue-pigment producing minerals; they were so named because they were poor in known metals, and gave poisonous arsenic-containing fumes when smelted. In 1735, such ores were found to be reducible to a new metal (the first discovered since ancient times), and this was ultimately named for the kobold.

Today, some types of cobalt are produced specifically from one of a number of metallic-lustered ores, such as for example cobaltite (CoAs S). The element is however more usually produced as a by-product of copper and nickel mining. The copper belt in the Democratic Republic of the Congo (DRC), Central African Republic and Zambia yields most of the global cobalt production. The DRC alone accounted for more than 50% of world production in 2016 (123,000 tonnes), according to Natural Resources Canada.

Cobalt is primarily used in the manufacture of magnetic, wear-resistant and high-strength alloys. The compounds cobalt silicate and cobalt(II) aluminate (CoAl2O4, cobalt blue) give a distinctive deep blue color to glass, ceramics, inks, paints and varnishes. Cobalt occurs naturally as only one stable isotope, cobalt-59. Cobalt-60 is a commercially important radioisotope, used as a radioactive tracer and for the production of high energy gamma rays.

Cobalt is the active center of a type of coenzymes called cobalamins. vitamin B12, the best-known example of the type, is an essential trace mineral for all animals. Cobalt in inorganic form is also a micronutrient for bacteria, algae, and fungi.

« Supplemental Index