Sulfur

« Supplemental Index
Categories: Periodic Element

SulfurType: Lesser Element
Periodic Element: (S)
RDA: Not established; diet adequate in proteins meets body’s needs. Daily requirement estimated at about 1.2 g.

Importance- To Body:
Component of proteins, particularly muscle proteins. Structurally essential constituent of many proteins as amino acids are made into proteins: (insulin), many vitamins (thiamin and biotin: found in mucopolysaccharides present in cartilage, tendons, bone.
Distribution- In Body:
0.3 Approx. % of Body Mass
Widely distributed: particularly abundant in hair, skin, nails; excreted in urine.
Excess Effects:
None listed, not known
Deficiency Effects:
None listed, not known
Sources Food:
All protein containing foods; Meat, Milk, Eggs, Legumes (all rich in sulfur-containing amino acids)
Sources Environmental/Geographic:
None listed
Supplemental information:

Sulfur (Wikipedia)
Sulfur,  16S
Sulfur-sample.jpg
General properties
Alternative name sulphur (British spelling)
Appearance lemon yellow sintered microcrystals
Standard atomic weight (Ar, standard) [32.05932.076] conventional: 32.06
Sulfur in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
O

S

Se
phosphorussulfurchlorine
Atomic number (Z) 16
Group group 16 (chalcogens)
Period period 3
Element category   polyatomic nonmetal
Block p-block
Electron configuration [Ne] 3s2 3p4
Electrons per shell
2, 8, 6
Physical properties
Phase at STP solid
Melting point 388.36 K ​(115.21 °C, ​239.38 °F)
Boiling point 717.8 K ​(444.6 °C, ​832.3 °F)
Density (near r.t.) alpha: 2.07 g/cm3
beta: 1.96 g/cm3
gamma: 1.92 g/cm3
when liquid (at m.p.) 1.819 g/cm3
Critical point 1314 K, 20.7 MPa
Heat of fusion mono: 1.727 kJ/mol
Heat of vaporization mono: 45 kJ/mol
Molar heat capacity 22.75 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 375 408 449 508 591 717
Atomic properties
Oxidation states 6, 5, 4, 3, 2, 1, −1, −2 ​(a strongly acidic oxide)
Electronegativity Pauling scale: 2.58
Ionization energies
  • 1st: 999.6 kJ/mol
  • 2nd: 2252 kJ/mol
  • 3rd: 3357 kJ/mol
  • (more)
Covalent radius 105±3 pm
Van der Waals radius 180 pm
Color lines in a spectral range
Miscellanea
Crystal structure orthorhombic
Orthorhombic crystal structure for sulfur
Thermal conductivity 0.205 W/(m·K) (amorphous)
Electrical resistivity 2×1015  Ω·m (at 20 °C) (amorphous)
Magnetic ordering diamagnetic
Magnetic susceptibility (α) −15.5·10−6 cm3/mol (298 K)
Bulk modulus 7.7 GPa
Mohs hardness 2.0
CAS Number 7704-34-9
History
Discovery Chinese(before 2000 BCE)
Recognized as an element by Antoine Lavoisier (1777)
Main isotopes of sulfur
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
32S 94.99% stable
33S 0.75% stable
34S 4.25% stable
35S trace 87.32 d β 35Cl
36S 0.01% stable
| references | in Wikidata

Sulfur is a chemical element with symbol S and atomic number 16. It is abundant, multivalent, and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula S8. Elemental sulfur is a bright yellow crystalline solid at room temperature. Chemically, sulfur reacts with all elements except for gold, platinum, iridium, tellurium, and the noble gases.

Sulfur is the tenth most common element by mass in the universe, and the fifth most common on Earth. Though sometimes found in pure, native form, sulfur on Earth usually occurs as sulfide and sulfate minerals. Being abundant in native form, sulfur was known in ancient times, being mentioned for its uses in ancient India, ancient Greece, China, and Egypt. In the Bible, sulfur is called brimstone. Today, almost all elemental sulfur is produced as a byproduct of removing sulfur-containing contaminants from natural gas and petroleum. The greatest commercial use of the element is the production of sulfuric acid for sulfate and phosphate fertilizers, and other chemical processes. The element sulfur is used in matches, insecticides, and fungicides. Many sulfur compounds are odoriferous, and the smells of odorized natural gas, skunk scent, grapefruit, and garlic are due to organosulfur compounds. Hydrogen sulfide gives the characteristic odor to rotting eggs and other biological processes.

Sulfur is an essential element for all life, but almost always in the form of organosulfur compounds or metal sulfides. Three amino acids (cysteine, cystine, and methionine) and two vitamins (biotin and thiamine) are organosulfur compounds. Many cofactors also contain sulfur including glutathione and thioredoxin and iron–sulfur proteins. Disulfides, S–S bonds, confer mechanical strength and insolubility of the protein keratin, found in outer skin, hair, and feathers. Sulfur is one of the core chemical elements needed for biochemical functioning and is an elemental macronutrient for all living organisms.

« Supplemental Index