Vanadium

« Supplemental Index
Categories: Periodic Element

VanadiumType: Trace Element
Periodic Element: (V)
RDA:None listed. Tolerable Upper Intake Level (UL) of dietary vanadium, beyond which adverse effects may occur, is set at 1.8 mg/day.
Importance- To Body:
(Not Considered Essential)
Distribution- In Body:
* Approx. % of Body Mass
Dietary intake is estimated at 6 to 18 µg/day, with less than 5% absorbed. The Tolerable Upper Intake Level (UL) of dietary vanadium, beyond which adverse effects may occur, is set at 1.8 mg/day
Vanadium compounds are poorly absorbed through the gastrointestinal system.
Excess Effects:
Effects have been reported after oral or inhalation exposures on blood parameters, liver, neurological development, and other organs in rats.
Deficiency Effects:
Deficiencies in vanadium result in Reduced Growth in rats, (application to human physiology unknown).
Sources Food:
None listed
Sources Environmental/Geographic:
The vanadyl ion is abundant in seawater, having an average concentration of 30 nM. Some mineral water springs also contain the ion in high concentrations. For example, springs near Mount Fuji contain as much as 54 μg per liter.
The cosmic abundance of vanadium in the universe is 0.0001%, making the element nearly as common as copper or zinc.
Supplemental information:
All vanadium compounds should be considered toxic.

Vanadium (Wikipedia)
Vanadium,  23V
Vanadium etched.jpg
General properties
Pronunciation /vəˈndiəm/ (və-NAY-dee-əm)
Appearance blue-silver-grey metal
Standard atomic weight (Ar, standard) 50.9415(1)
Vanadium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


V

Nb
titaniumvanadiumchromium
Atomic number (Z) 23
Group group 5
Period period 4
Element category   transition metal
Block d-block
Electron configuration [Ar] 3d3 4s2
Electrons per shell
2, 8, 11, 2
Physical properties
Phase at STP solid
Melting point 2183 K ​(1910 °C, ​3470 °F)
Boiling point 3680 K ​(3407 °C, ​6165 °F)
Density (near r.t.) 6.0 g/cm3
when liquid (at m.p.) 5.5 g/cm3
Heat of fusion 21.5 kJ/mol
Heat of vaporization 444 kJ/mol
Molar heat capacity 24.89 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2101 2289 2523 2814 3187 3679
Atomic properties
Oxidation states 5, 4, 3, 2, 1, −1, −3 ​(an amphoteric oxide)
Electronegativity Pauling scale: 1.63
Ionization energies
  • 1st: 650.9 kJ/mol
  • 2nd: 1414 kJ/mol
  • 3rd: 2830 kJ/mol
  • (more)
Atomic radius empirical: 134 pm
Covalent radius 153±8 pm
Color lines in a spectral range
Miscellanea
Crystal structure body-centered cubic (bcc)
Body-centered cubic crystal structure for vanadium
Speed of sound thin rod 4560 m/s (at 20 °C)
Thermal expansion 8.4 µm/(m·K) (at 25 °C)
Thermal conductivity 30.7 W/(m·K)
Electrical resistivity 197 nΩ·m (at 20 °C)
Magnetic ordering paramagnetic
Magnetic susceptibility +255.0·10−6 cm3/mol (298 K)
Young's modulus 128 GPa
Shear modulus 47 GPa
Bulk modulus 160 GPa
Poisson ratio 0.37
Mohs hardness 6.7
Vickers hardness 628–640 MPa
Brinell hardness 600–742 MPa
CAS Number 7440-62-2
History
Discovery Andrés Manuel del Río (1801)
First isolation Nils Gabriel Sefström (1830)
Named by Nils Gabriel Sefström (1830)
Main isotopes of vanadium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
48V syn 16 d β+ 48Ti
49V syn 330 d ε 49Ti
50V 0.25% 1.5×1017 y ε 50Ti
β 50Cr
51V 99.75% stable
| references | in Wikidata

Vanadium is a chemical element with symbol V and atomic number 23. It is a hard, silvery grey, ductile, and malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer (passivation) stabilizes the free metal somewhat against further oxidation.

Andrés Manuel del Río discovered compounds of vanadium in 1801 in Mexico by analyzing a new lead-bearing mineral he called "brown lead", and presumed its qualities were due to the presence of a new element, which he named erythronium (derived from Greek for "red") since, upon heating, most of the salts turned red. Four years later, however, he was (erroneously) convinced by other scientists that erythronium was identical to chromium. Chlorides of vanadium were generated in 1830 by Nils Gabriel Sefström who thereby proved that a new element was involved, which he named "vanadium" after the Scandinavian goddess of beauty and fertility, Vanadís (Freyja). Both names were attributed to the wide range of colors found in vanadium compounds. Del Rio's lead mineral was later renamed vanadinite for its vanadium content. In 1867 Henry Enfield Roscoe obtained the pure element.

Vanadium occurs naturally in about 65 different minerals and in fossil fuel deposits. It is produced in China and Russia from steel smelter slag; other countries produce it either from the flue dust of heavy oil, or as a byproduct of uranium mining. It is mainly used to produce specialty steel alloys such as high-speed tool steels. The most important industrial vanadium compound, vanadium pentoxide, is used as a catalyst for the production of sulfuric acid.

Large amounts of vanadium ions are found in a few organisms, possibly as a toxin. The oxide and some other salts of vanadium have moderate toxicity. Particularly in the ocean, vanadium is used by some life forms as an active center of enzymes, such as the vanadium bromoperoxidase of some ocean algae.

« Supplemental Index